
Chapter 13

An Android Social Media App
In This Chapter
▶ Posting on Twitter with Android code
▶ Tweeting with your app on a user’s behalf
▶ Using Java exceptions to get out of a jam

A
 reader from Vancouver (in British Columbia, Canada) writes:

“Hello, Barry. I just thought I would ask that you include the area that
seems to get attention from app developers: programs connecting with
social sites. I look forward to reading the new book! Best regards, David.”

Well, David, you’ve inspired me to create a Twitter app. This chapter’s exam-
ple does two things: Post a new tweet, and get a twitter user’s timeline. The
app can perform many more Twitter tasks — for example, search for tweets,
look for users, view trends, check friends and followers, gather suggestions,
and do lots of other things that Twitter users want done. For simplicity,
though, I have the app perform only two tasks: tweet and display a timeline.

I can summarize the essence of this chapter’s Twitter code in two short state-
ments. To post a tweet, the app executes

twitter.updateStatus(“This is my tweet.”);

And, to display a user’s timeline, the app executes

List<twitter4j.Status> statuses =
 twitter.getUserTimeline(“allmycode”);

Of course, these two statements only serve as a summary, and a summary is
never the same as the material it summarizes. Imagine standing on the street
in Times Square and shouting the statement “Twitter dot update status: ‘This
is my tweet.’” Nothing good happens because you’re issuing the correct com-
mand in the wrong context. In the same way, the context surrounding a call
to twitter.updateStatus in an app matters an awful lot.

352 Part IV: Powering Android with Java Code

This chapter covers all the context surrounding your calls to twitter.
updateStatus and twitter.getUserTimeline. In the process, you can
read about Java’s exceptions — a vital feature that’s available to all Java
 programmers.

The Twitter App’s Files
You can import this chapter’s code from my website (http://allmycode.
com/Java4Android) by following the instructions in Chapter 2. As is true
for any Android app, this chapter’s Eclipse project contains about 40 files
in about 30 different folders. In this chapter, I concentrate on the project’s
MainActivity.java file. But a few other files require some attention.

The Twitter4J API jar file
Android has no built-in support for communicating with Twitter. Yes, the raw
materials are contained in Android’s libraries, but to deal with all of Twitter’s
requirements, someone has to paste together those raw materials in a useful
way. Fortunately, several developers have done all the pasting and made
their libraries available for use by others. The library that I use in this chap-
ter is Twitter4J. Its website is http://twitter4j.org.

Chapter 4 describes the role of .jar files in Java program development. For
this chapter’s example to work, your project must include a .jar file con-
taining the Twitter4J libraries. If you’ve successfully imported this book’s
code into Eclipse, the 13-01 project contains the necessary .jar file.

If you’re creating this chapter’s example on your own, or if you’re having
trouble with the project’s existing .jar files, you can add the Twitter4J
libraries by following these steps:

 1. Visit http://twitter4j.org.

 2. Find the link to download the latest stable version of Twitter4J.

 To run this chapter’s example, I use Twitter4J version 3.0.3. If you down-
load a later version, it’ll probably work. But I make no promises about
the backward compatibility, forward compatibility, or sideward com-
patibility of the various Twitter4J versions. If my example doesn’t run
properly for you, you can search the Twitter4J site for a download link
to version 3.0.3.

 3. Click the link to download the Twitter4J software.

 The file that I downloaded is twitter4j-3.0.3.zip.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android
http://twitter4j.org
http://twitter4j.org

353 Chapter 13: An Android Social Media App

 4. Look for a twitter4j-core.jar file inside the downloaded .zip
file.

 In the .zip file that I downloaded, I found a file named twitter4j-
core-3.0.3.jar.

 5. Extract the twitter4j-core.jar file to a place on your computer’s
hard drive.

 Any location on your hard drive is okay, as long as you remember where
you put the twitter4j-core.jar file.

 6. In Eclipse’s Package Explorer, right-click (or Control-click on a Mac)
this chapter’s project.

 7. In the resulting context menu, select Properties.

 Eclipse’s Properties dialog box appears.

 8. On the left side of the Properties dialog box, select Java Build Path.

 9. In the middle of the Properties dialog box, select the Libraries tab.

 10. On the right side of the Properties dialog box, click the Add External
JARs button.

 Eclipse displays the JAR Selection dialog box.

 11. In the JAR Selection dialog box, navigate to the directory containing
your twitter4j-core.jar file.

 What I refer to as your twitter4j-core.jar file is probably named
twitter4j-core-3.0.3.jar or similar.

 12. Select the twitter4j-core.jar file and close the JAR Selection
dialog box.

 Doing so adds your twitter4j-core.jar file to the list of items on the
Libraries tab.

 13. In the middle of the Properties dialog box, switch from the Libraries
tab to the Order and Export tab.

 The Order and Export tab contains a list of items, one of which is your
twitter4j-core.jar file.

 14. Make sure that the check box next to your twitter4j-core.jar file
is selected.

 Doing so ensures that this .jar file is uploaded to whatever device
you use to test the application. Without the check mark indicating the
selection, Eclipse compiles the code using the .jar file but doesn’t
bother sending the .jar file to an emulator or to your phone. It’s quite
frustrating.

354 Part IV: Powering Android with Java Code

 15. Select your twitter4j-core.jar item on the Order and Export
tab. Then, on the right side of the Properties dialog box, click the Up
button a few times.

 Keep clicking the Up button until your twitter4j-core.jar file is at
the top of the Order and Export tab’s list.

 16. Click OK to dismiss the Properties dialog box.

 If you look at Eclipse’s Package Explorer, your project now has a
Referenced Libraries branch. When you expand the Referenced Libraries
branch, you see a branch for your twitter4j-core.jar file.

The manifest file
Every Android app has an AndroidManifest.xml file. Listing 13-1 contains
the AndroidManifest.xml file for this chapter’s Twitter app.

Listing 13-1: The AndroidManifest.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=
 “http://schemas.android.com/apk/res/android”
 package=”com.allmycode.twitter”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk
 android:minSdkVersion=”8”
 android:targetSdkVersion=”17” />
 <uses-permission android:name=
 „android.permission.INTERNET“/>

 <application
 android:allowBackup=“true“
 android:icon=“@drawable/ic_launcher“
 android:label=“@string/app_name“
 android:theme=“@style/AppTheme“ >
 <activity
 android:name=“com.allmycode.twitter.MainActivity“
 android:label=“@string/app_name“
 android:windowSoftInputMode=”adjustPan” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />
 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>

355 Chapter 13: An Android Social Media App

 </activity>
 </application>

</manifest>

When you use Eclipse to create a new Android application project, Eclipse
writes most of the code in Listing 13-1 automatically. For this chapter’s proj-
ect, I have to add two additional snippets of code:

 ✓ The windowSoftInputMode attribute tells Android what to do when
the user activates the onscreen keyboard.

 The adjustPan value tells Android not to squash together all my
screen’s widgets. (Take my word for it: The app looks ugly without this
adjustPan value.)

 ✓ The uses-permission element warns Android that my app requires
Internet connectivity.

 When a user installs an app that uses the android.permission.
INTERNET permission, Android warns the user that the app requires
full network access. Yes, a large percentage of users ignore this kind of
warning. But the app can’t access Twitter without the permission. If you
forget to add this uses-permission element (as I often do), the app
doesn’t obey any of your Twitter commands. And when your app fails to
contact the Twitter servers, Android often displays only cryptic, unhelp-
ful error messages.

 The error messages from an unsuccessful run of your Android app range
from extremely helpful to extremely unhelpful. One way or another, it never
hurts to read these messages. You can find most of the messages in Eclipse’s
Console view or in Eclipse’s LogCat view.

 For more information about AndroidManifest.xml files, see Chapter 4.

The main activity’s layout file
Chapter 4 introduces the use of a layout file to describe the look of an activ-
ity on the screen. The layout file for this chapter’s example has no extraor-
dinary qualities. I include it in Listing 13-2 for completeness. As usual, you
can import this chapter’s code from my website (http://allmycode.com/
Java4Android). But if you’re living large and creating the app on your own
from scratch, you can copy the contents of Listing 13-2 to the project’s res/
layout/activity_main.xml file. Alternatively, you can use Eclipse’s tool-
set to drag and drop, point and click, or type and tap your way to the graphi-
cal layout shown in Figure 13-1.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

356 Part IV: Powering Android with Java Code

Listing 13-2: The Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:paddingBottom=”@dimen/activity_vertical_margin”
 android:paddingLeft=”@dimen/activity_horizontal_margin”
 android:paddingRight=
 “@dimen/activity_horizontal_margin”
 android:paddingTop=”@dimen/activity_vertical_margin”
 tools:context=”.MainActivity” >

 <TextView
 android:id=”@+id/textView2”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignBaseline=”@+id/editTextUsername”
 android:layout_alignBottom=”@+id/editTextUsername”
 android:layout_alignLeft=”@+id/editTextTweet”
 android:text=”@string/at_sign”
 android:textAppearance=
 “?android:attr/textAppearanceLarge” />

 <EditText
 android:id=”@+id/editTextUsername”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_above=”@+id/timelineButton”
 android:layout_toRightOf=”@+id/textView2”
 android:ems=”10”
 android:hint=”@string/type_username_here” />

 <TextView
 android:id=”@+id/textViewTimeline”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/timelineButton”
 android:layout_below=”@+id/timelineButton”
 android:maxLines=”100”
 android:scrollbars=”vertical”
 android:text=”@string/timeline_here” />

 <Button
 android:id=”@+id/timelineButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/textView2”
 android:layout_centerVertical=”true”
 android:onClick=”onTimelineButtonClick”
 android:text=”@string/timeline” />

357 Chapter 13: An Android Social Media App

 <Button
 android:id=”@+id/tweetButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_above=”@+id/editTextUsername”
 android:layout_alignLeft=”@+id/editTextTweet”
 android:layout_marginBottom=”43dp”
 android:onClick=”onTweetButtonClick”
 android:text=”@string/tweet” />

 <EditText
 android:id=”@+id/editTextTweet”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_above=”@+id/tweetButton”
 android:layout_alignParentLeft=”true”
 android:layout_marginLeft=”14dp”
 android:ems=”10”
 android:hint=”@string/type_your_tweet_here” />

 <TextView
 android:id=”@+id/textViewCountChars”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignBaseline=”@+id/tweetButton”
 android:layout_alignBottom=”@+id/tweetButton”
 android:layout_toRightOf=”@+id/timelineButton”
 android:text=”@string/zero” />

</RelativeLayout>

Figure 13-1:
The graphi-

cal layout
of the main

activity’s
screen.

358 Part IV: Powering Android with Java Code

The twitter4j.properties file
This chapter’s example involves a file that you don’t find in most other apps.
It’s a file of the kind you see in Listing 13-3.

Listing 13-3: A Fake twitter4j.properties File (Yes, It’s Fake!)
oauth.consumerKey=01qid0qod5drmwVJIkU1dg
oauth.consumerSecret=TudvMiX1h37WsIvq173SNWnRIhI0ALnGfS1
oauth.accessToken=1385541-ueSEFeFgwQJ8vUpfy6LBv6FibSfm5aXF
oauth.accessTokenSecret=G2FXeXYLSHPI7XlVdMsS2eGfIaKU6nJc

The twitter4j.properties file lives directly inside your project’s src
directory, as shown in Figures 13-2 and 13-3. Each line of the file gives your
app important information for communicating with Twitter.

Figure 13-2:
The location

of twit-
ter4j.-
proper-
ties on

a Windows
computer.

Figure 13-3:
The location

of twit-
ter4j.-
proper-
ties on a

Mac.

359 Chapter 13: An Android Social Media App

When you run this chapter’s example, the code has to talk to Twitter on your
behalf. And normally, to talk to Twitter, you supply a username and pass-
word. But should you be sharing your Twitter password with any app that
comes your way? Probably not. Your password is similar to the key to your
house. You don’t want to give copies of your house key to strangers, and you
don’t want an Android app to remember your Twitter password.

So how can your app post a tweet without having your Twitter password?
One answer is OAuth, a standardized way to have apps log on to host com-
puters. If the gobbledygook in Listing 13-3 is copied correctly, the app
acquires revocable permission to act on behalf of the Twitter user. And the
app never gets hold of the user’s password.

Now, here come the disclaimers:

 ✓ A discussion of how OAuth works, and why it’s safer than using ordi-
nary Twitter passwords, is far beyond the scope of this book.

 I don’t pretend to explain OAuth and its mysteries in this chapter.

 ✓ True app security requires more than a simple twitter4j.properties
file.

 The goal of this chapter is to show how an app can talk to a social media
site. In the code, I use OAuth and Twitter4J commands to achieve that
goal as quickly as I can, without necessarily showing you the “right”
way to do it. For more comprehensive coverage of OAuth, visit http://
oauth.net: the official website for OAuth developers.

 ✓ The codes in Listing 13-3 don’t work.

 I’m not prepared to share my own OAuth codes with the general public,
so to create Listing 13-3, I took the general outline of my real twitter4j.
properites file and then ran my fingers over the keyboard to replace
most of the characters.

 To run this chapter’s app, you have to create your own set of OAuth
keys and copy them to your twitter4j.properties file. The next sec-
tion outlines the steps.

Getting OAuth codes
For your Android app to communicate with Twitter servers, you need your
own OAuth codes. To get them, follow this section’s steps.

 The following instructions apply to the Twitter web pages for developers at
the time of this book’s publication. Twitter might change the design of its web-
site at any time without notice. (At any rate, it won’t notify me!)

http://oauth.net/
http://oauth.net/

360 Part IV: Powering Android with Java Code

 1. Sign in to your Twitter user account (or register for an account if you
don’t already have one).

 2. Visit https://dev.twitter.com/apps/new.

 If the stars are aligned harmoniously, you should see Twitter’s Create an
Application page.

 3. On the Create an Application page, fill in all required fields along
with the (misleadingly optional) Callback URL field.

 When I visit the page, I see the Name field, the Description field, the
Website field, and the Callback URL field. All but the Callback URL field
are listed as being required.

 Typing your name in the Name field is a no-brainer. But what do you use
for the other fields? After all, you aren’t creating an industrial-strength
Android app. You’re creating only a test app — an app to help you see
how to use Twitter4J.

 The good news is that almost anything you type in the Description field
is okay. The same is true for the Website and Callback URL fields, as
long as you type things that look like real URLs.

 I’ve never tried typing a twitter.com URL in either the Website or
Callback URL fields, but I suspect that typing a twitter.com URL
doesn’t work.

 To communicate with Twitter via an Android app, you need a callback
URL. In other words, for this chapter’s example, the callback URL isn’t
optional. Neither the Website field nor the Callback URL field has to
point to a real web page. But you must fill in those two fields.

 The Callback URL field isn’t marked as being required. Nevertheless, you
must type a URL in the Callback URL field.

 4. After agreeing to the terms, and doing the other stuff to prove that
you’re a good person, click the Create Your Twitter Application
button.

 Doing so brings you to a page where you see some details about your
new application — the Details tab, in other words. On this page, you see
four important items: your app’s access level, consumer key, and con-
sumer secret and a button that offers to create your app’s access token.

 In the OAuth world, an app whose code communicates with Twitter’s
servers is a consumer. To identify itself as a trustworthy consumer, an
app must send passwords to Twitter’s servers. In OAuth terminology,
these passwords are called the consumer key and the consumer secret.

 5. On that same web page, select your application’s Settings tab.

https://dev.twitter.com/apps/new

361 Chapter 13: An Android Social Media App

 6. Among the settings, look for a choice of access types. Change your
app’s access from Read Only (the default) to Read, Write and Access
Direct Messages.

 For this toy application, you select Read, Write and Access Direct
Messages — the most permissive access model that’s available. This
option prevents your app from hitting brick walls because of access
problems. But when you develop a real-life application, you do the
 opposite — you select the least permissive option that suits your appli-
cation’s requirements.

 First change your app’s access level, and then create the app’s access
token (as explained in Step 9). Don’t create the access token before
changing the access level. If you try to change the access level after
you’ve created the access token, your app won’t work. What’s worse,
the dev.twitter.com page won’t warn you about the problem. Believe
me — I’ve wasted hours of my life on this Twitter quirk.

 7. Click the button that offers to update your application’s settings.

 Doing so changes your app’s access level to Read, Write and Access
Direct Messages.

 8. Return to your application’s Details tab.

 I’m not thrilled with the way Twitter’s developer site works. A title near
the top of the Settings tab reads Application Details, and there’s no title
near the top of the Details tab. Anyway, find the Details tab and click on it.

 9. Click the button that offers to create your access token.

 After doing so, your app’s Details tab now displays your app’s access
token and the access token secret, in addition to your app’s access level,
consumer key, and consumer secret.

 10. Copy the four codes (Consumer Key, Consumer Secret, Access Token,
and Access Token Secret) from your app’s Details tab to the appropri-
ate lines in your twitter4j.properties file.

 Whew! You’re done creating your twitter4j.properites file!

The Application’s Main Activity
What’s a Java Programming For Android Developers For Dummies book with-
out some Java code? Listing 13-4 contains the Twitter app’s Java code.

362 Part IV: Powering Android with Java Code

Listing 13-4: The MainActivity.java file
package com.allmycode.twitter;

import java.util.List;

import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.text.method.ScrollingMovementMethod;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class MainActivity extends Activity {
 TextView textViewCountChars, textViewTimeline;
 EditText editTextTweet, editTextUsername;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 editTextTweet =
 (EditText) findViewById(R.id.editTextTweet);
 editTextTweet.addTextChangedListener
 (new MyTextWatcher());
 textViewCountChars =
 (TextView) findViewById(R.id.textViewCountChars);
 editTextUsername =
 (EditText) findViewById(R.id.editTextUsername);
 textViewTimeline =
 (TextView) findViewById(R.id.textViewTimeline);
 textViewTimeline.setMovementMethod
 (new ScrollingMovementMethod());
 }

 // Button click listeners

 public void onTweetButtonClick(View view) {
 new MyAsyncTaskTweet().execute
 (editTextTweet.getText().toString());
 }

 public void onTimelineButtonClick(View view) {
 new MyAsyncTaskTimeline().execute
 (editTextUsername.getText().toString());

363 Chapter 13: An Android Social Media App

 }

 // Count characters in the Tweet field

 class MyTextWatcher implements TextWatcher {

 @Override
 public void afterTextChanged(Editable s) {
 textViewCountChars.setText
 (“” + editTextTweet.getText().length());
 }

 @Override
 public void beforeTextChanged(CharSequence s,
 int start, int count, int after) {
 }

 @Override
 public void onTextChanged(CharSequence s,
 int start, int before, int count) {
 }

 }

 // The AsyncTask classes

 public class MyAsyncTaskTweet
 extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... tweet) {
 String result = “”;

 Twitter twitter = TwitterFactory.getSingleton();
 try {
 twitter.updateStatus(tweet[0]);
 result =
 getResources().getString(R.string.success);
 } catch (TwitterException twitterException) {
 result =
 getResources().getString(R.string.failure);
 }

 return result;
 }

 @Override
 protected void onPostExecute(String result) {
 editTextTweet.setHint(result);
 editTextTweet.setText(“”);
 }

(continued)

364 Part IV: Powering Android with Java Code

Listing 13-4 (continued)
 }

 public class MyAsyncTaskTimeline
 extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... username) {
 String result = new String(“”);
 List<twitter4j.Status> statuses = null;

 Twitter twitter = TwitterFactory.getSingleton();
 try {
 statuses = twitter.getUserTimeline(username[0]);

 } catch (TwitterException twitterException) {
 twitterException.printStackTrace();
 }

 for (twitter4j.Status status : statuses) {
 result += status.getText();
 result += “\n”;
 }
 return result;
 }

 @Override
 protected void onPostExecute(String result) {
 editTextUsername.setText(“”);
 textViewTimeline.setText(result);
 }
 }
}

 Twitter’s network protocols require that the device that runs this chapter’s
app is set to the correct time. I don’t know how correct the “correct time” has
to be, but I’ve had lots of trouble running the app on emulators. Either my
emulator is set to get the time automatically from the network (and it gets the
time incorrectly) or I set the time manually and the seconds part of the time
isn’t close enough. One way or another, the error message that comes back
from Twitter (usually specifying a null authentication challenge) isn’t help-
ful. So I avoid lots of hassle by avoiding emulators whenever I test this code.
Rather than run an emulator, I set my phone or tablet to get the network time
automatically. Then I run this chapter’s app on that phone or tablet. I recom-
mend that you do the same.

When you run the app, you see two areas. One area contains a Tweet button;
the other area contains a Timeline button, as shown in Figure 13-4.

365 Chapter 13: An Android Social Media App

Figure 13-4:
The main
activity in

its pristine
state.

In Figure 13-4, the text in both text fields is light gray. This happens because I
use android:hint attributes in Listing 13-2. A hint is a bunch of characters
that appear only when a text field is otherwise empty. When the user clicks
inside the text field, or types any text inside the text field, the hint disappears.

Type a tweet into the text field on top, and then press the Tweet button,
as shown in Figure 13-5. If your attempt to tweet is successful, the message
Success! replaces the tweet in the text field, as shown in Figure 13-6. If, for
one reason or another, your tweet can’t be posted, the message Failed to
tweet replaces the tweet in the text field, as shown in Figure 13-7.

Figure 13-5:
The user

types a
tweet.

Figure 13-6:
The app

indicates a
successful

tweet.

366 Part IV: Powering Android with Java Code

Figure 13-7:
The app

brings bad
tidings to
the user.

Next, type a username in the lower text field, and then click Timeline. If all
goes well, a list of the user’s most recent tweets appears below the Timeline
button, as shown in Figure 13-8. You can scroll the list to see more of the
user’s tweets.

Figure 13-8:
A user’s
timeline.

The onCreate method
The onCreate method in Listing 13-4 calls findViewById to locate some of
the widgets declared in Listing 13-2.

 For insight into the workings of Android’s findViewById method, see
Chapter 11.

The onCreate method also creates a MyTextWatcher instance to listen
for changes in the field where the user types a tweet. Android notifies the
MyTextWatcher instance whenever the user types characters in (or deletes
characters from) the app’s editTextTweet field. Later in Listing 13-4, the
actual TextChangedListener class’s afterTextChanged method counts

367 Chapter 13: An Android Social Media App

the number of characters in the editTextTweet field. The method dis-
plays the count in the tiny textViewCountChars field. (With the advent of
Twitter, the number 140 has become quite important.)

This chapter’s app doesn’t do anything special if a user types more than 140
characters into the editTextTweet field. In a real-life app, I’d add code to
handle 141 characters gracefully, but when I create sample apps, I like to
keep the code as uncluttered as possible.

 Android actually notifies the MyTextWatcher instance three times for
each text change in the editTextTweet field — once before changing the
text, once during the change of the text, and once after changing the text. In
Listing 13-4, I don’t make MyTextWatcher execute any statements before
or during the changing of the text. In MyTextWatcher, the only method
whose body contains statements is the afterTextChanged method.
Even so, in order to implement Android’s TextWatcher interface, the
MyTextWatcher class must provide bodies for the beforeTextChanged and
the onTextChanged methods.

Finally, in the onCreate method, the call to setMovementMethod(new
ScrollingMovementMethod()) permits scrolling on the list of items in a
user’s timeline.

The button listener methods
Listing 13-2 describes two buttons, each with its own onClick method.
I declare the two methods in Listing 13-4 — the onTweetButtonClick
method and the onTimelineButtonClick method. Each of the methods
has a single statement in its body — a call to execute a newly constructed
AsyncTask of some kind. Believe me, this is where the fun begins!

The trouble with threads
In Chapter 10, I describe the callback as the solution to all your activity’s
timing problems. Your activity wants to be alerted after a certain number of
seconds passes. You can’t stall the execution of your activity during those
seconds. If you do, your activity is completely unresponsive to user input
during those seconds. At best, users give your app a bad rating on Google
Play; at worst, users pound on their screens, breaking the glass, blaming you,
and sending you the repair bill.

Rather than put your activity to sleep for ten seconds, you create another
class that sleeps on your activity’s behalf. When the other class’s nap

368 Part IV: Powering Android with Java Code

is finished, that other class issues a callback to your original activity.
Everything is hunky-dory except for what I say in Chapter 10, in a paragraph
with the little Technical Stuff icon on it:

“Well, I must confess that the code in Listings 10-10 through 10-13 doesn’t
solve the responsiveness problem. To make the program more responsive,
you use the interface tricks in Listings 10-10 through 10-13 and, in addition,
you put TimerCommon in a thread of its own.”

Chapter 10 is the wrong place to describe threads. So in Chapter 10, the dis-
cussion of activity timing ends with a disappointing thud. (Yes, I’m secure
enough to admit it.) Creating a thread means executing several different
pieces of code at the same time. For the Java developer, things become com-
plicated in no time at all. Juggling several simultaneous pieces of code is like
juggling several raw eggs: One way or another, you’re sure to end up with egg
on your face.

To help fix all this, the creators of Android developed a multi-threading frame-
work. Within this framework, you bundle all your delicately timed code into a
carefully defined box. This box contains all the ready-made structure for man-
aging threads in a well-behaved way. Rather than worry about where to put
your sleep method calls and how to change a field’s text in a timely fashion,
you simply plug certain statements into certain places in the box and let the
box’s ready-made structure take care of all the routine threading details.

This marvelous box, the miracle cure for all your activity-timing ills, belongs
to Android’s AsyncTask classes. To understand these classes, you need a bit
of terminology explained:

 ✓ Thread: A bunch of statements to be executed in the order prescribed
by the code

 ✓ Multi-threaded code: A bunch of statements in more than one thread

 Java executes each thread’s statements in the prescribed order. But if
your program contains two threads, Java might not execute all the state-
ments in one thread before executing all the statements in the other
thread. Instead, Java might intermingle execution of the statements in
the two threads. For example, I ran the following code several times:
package com.allmycode.threads;

public class TwoThreads {

 public static void main(String[] args) {
 new OneThread().start();
 new AnotherThread().start();
 }

369 Chapter 13: An Android Social Media App

}

class OneThread extends Thread {
 public void run() {
 System.out.print(“1”);
 System.out.print(“2”);
 System.out.print(“3”);
 }
}

class AnotherThread extends Thread {
 public void run() {
 System.out.print(“A”);
 System.out.print(“B”);
 System.out.print(“C”);
 }
}

 The first time I ran the code, the output was 1AB23C. The second time,
the output was 123ABC. The tenth time, the output was ABC123. The
eleventh time, the output was 12AB3C. The output 1 always comes
before the output 2 because the statements to output 1 and 2 are in the
same thread. But you can’t predict whether Java will display 1 or A first,
because the statements to output 1 and A are in two different threads.

 ✓ The UI thread: The thread that displays widgets on the screen

 In an Android program, your main activity runs primarily in the UI
thread.

 The “UI” in “UI Thread” stands for “user interface.” Another name for the
UI thread is the main thread. The use of this terminology predates the
notion of a main activity in Android.

 ✓ A background thread: Any thread other than the UI thread

 In an Android program, when you create an AsyncTask class, some of
that class’s code runs in a background thread.

In addition to all the terminology, you should know about two rules concern-
ing threads:

 ✓ Any time-consuming code should be in a background thread — not in
the UI thread.

 If you put time-consuming code in the UI thread, the app responds slug-
gishly to the user’s clicks and keystrokes. Needless to say, users don’t
like this. In Chapter 10, a call to sleep for ten seconds is time-consuming
code. In this chapter, any access to data over the Internet (like posting a
tweet or getting a Twitter user’s timeline) is time-consuming code.

370 Part IV: Powering Android with Java Code

 ✓ Any code that modifies a property of the screen must be in the UI
thread.

 If, in a background thread, you have code that modifies text on the
screen, you’re either gumming up the UI thread or creating code that
doesn’t compile. Either way, you don’t want to do it.

Android’s AsyncTask
A class that extends Android’s AsyncTask looks like the outline in Listing 13-5.

Listing 13-5: The Outline of an AsyncTask Class
public class MyAsyncTaskName
 extends AsyncTask<Type1, Type2, Type3> {

 @Override
 protected void onPreExecute () {
 // Execute statements in the UI thread before the
 // starting background thread. For example, display
 // an empty progress bar.
 }

 @Override
 protected Type3 doInBackground(Type1... param1) {
 // Execute statements in the background thread.
 // For example, get info from Twitter.

 return resultValueOfType3;
 }

 @Override
 protected void onProgressUpdate(Type2... param) {
 // Update a progress bar (or some other kind of
 // progress indicator) during execution of the
 // background thread.
 }

 @Override
 protected void onPostExecute(Type3 resultValueOfType3) {
 // Execute statements in the UI thread after
 // finishing the statements in the background thread.
 // For example, display info from Twitter in the
 // activity’s widgets.
 }
}

371 Chapter 13: An Android Social Media App

When you create an AsyncTask class, Android executes each method in its
appropriate thread. In the doInBackground method (refer to Listing 13-5),
you put code that’s too time-consuming for the UI thread. So Android exe-
cutes the doInBackground method in the background thread. (Big surprise!)
In Listing 13-5’s other three methods (onPreExecute, onProgressUpdate,
and onPostExecute), you put code that updates the widgets on the device’s
screen. So Android executes these methods in the UI thread, as shown in
Figure 13-9.

Android also makes your life easier by coordinating the execution of an
AsyncTask class’s methods. For example, onPostExecute doesn’t change
the value of a screen widget until after the execution of doInBackground.
(Refer to Figure 13-9.) In this chapter’s Twitter app, the onPostExecute
method doesn’t update the screen until after the doInBackground method
has fetched a user’s timeline from Twitter. The user doesn’t see a timeline
until the timeline is ready to be seen.

Figure 13-9:
The UI
thread

and the
background

thread run
simultane-

ously.

You’d think that with all this coordination of method calls, you lose any
benefit from having more than one thread. But that’s not the case. Because
the doInBackground method runs outside the UI thread, your activity can
respond to the user’s clicks and drags while the doInBackground method
waits for a response from the Twitter servers. It’s all good.

372 Part IV: Powering Android with Java Code

My Twitter app’s AsyncTask classes
Listing 13-5 contains four methods. But in Listing 13-4, I override only
two of the methods — doInBackground and onPostExecute. The
MyAsyncTaskTweet and MyAsyncTaskTimeline classes in Listing 13-4
inherit the other two methods from their superclass.

Notice (in Listings 13-4 and 13-5) the use of generic type names in an
AsyncTask class. An AsyncTask is versatile enough to deal with all types of
values. In Listing 13-4, the first generic parameter of MyAsyncTaskTweet has
type String because a tweet is a string of as many as 140 characters. But
someone else’s AsyncTask might accept an image or a music file as its input.
So when you create an AsyncTask class, you “fill in the blanks” by putting
the following three type names inside the angle brackets:

 ✓ The first type name (Type1 in Listing 13-5) stands for a value (or
values) that you pass to the doInBackground method.

 The doInBackground method, with its varargs parameter, uses these
values to decide what has to be done.

 ✓ The second type name (Type2 in Listing 13-5) stands for a value (or
values) that mark the background thread’s progress in completing its
work.

 This chapter’s example has no progress bar, nor a progress indicator of
any kind. So in Listing 13-4, the second type name is Void.

 In Java, the Void class is a wrapper class for the void value. Put that in
your black hole of nothingness!

 ✓ The third type name (Type3 in Listing 13-5) stands for a value that
the doInBackground method returns and that the onPostExecute
method takes as a parameter.

 In the doInBackground method of Listing 13-4, this third type name
is String. It’s String because the doInBackground method returns
the word “Success!” or the words “Failed to tweet”, and the
onPostExecute method displays these words in the screen’s edit-
TextTweet field.

Figure 13-10 summarizes the way generic type names influence the methods’
types in Listing 13-4, and Figure 13-11 summarizes how values move from one
place to another in the MyAsyncTaskTweet class of Listing 13-4.

An AsyncTask can be fairly complicated. But when you compare Android’s
AsyncTask to the do-it-yourself threading alternatives, the AsyncTask idea
isn’t bad at all. In fact, when you get a little practice and create a few of your

373 Chapter 13: An Android Social Media App

own AsyncTask classes, you get used to thinking that way. The whole busi-
ness starts to feel quite natural.

Figure 13-10:
The use of
types in an
Async
Task
class.

Figure 13-11:
The flow of

values in an
Async
Task
class.

374 Part IV: Powering Android with Java Code

Cutting to the chase, at last
At the beginning of this chapter, I promise that a statement like

twitter.updateStatus(“This is my tweet.”);

lies at the heart of the code to post a tweet. You can see this by looking at the
first doInBackground method in Listing 13-4. Here’s a quick excerpt from
that method:

protected String doInBackground(String... tweet) {

 Twitter twitter = TwitterFactory.getSingleton();
 twitter.updateStatus(tweet[0]);

In the Twitter4J API,

 ✓ A Twitter object is a gateway to the Twitter servers.

 ✓ TwitterFactory is a class that helps you create a new Twitter object.

 In Java, a factory class is a class that can call a constructor on your behalf.

 ✓ Calling the getSingleton method creates a new Twitter object.

 A factory method, such as getSingleton, calls a constructor on your
behalf.

 ✓ A call to the Twitter class’s updateStatus method posts a brand-
new tweet.

In Listing 13-4, the parameter to the updateStatus method is an array ele-
ment. That’s because, in the doInBackground method’s header, tweet is a
varargs parameter. You can pass as many values to doInBackground as
you want. In the body of the method, you treat tweet as though it’s an ordi-
nary array. The first tweet value is tweet[0]. If there were a second tweet
value, it would be tweet[1]. And so on.

 For the lowdown on varargs parameters, see Chapter 12.

In Listing 13-4, the code to fetch a user’s timeline looks something like this:

List<twitter4j.Status> statuses = null;

Twitter twitter = TwitterFactory.getSingleton();
statuses = twitter.getUserTimeline(username[0]);

A fellow named Yusuke Yamamoto developed Twitter4J (or at least, Yusuke
Yamamoto was the Twitter4J project leader), and at some point Mr. Yamamoto
decided that the getUserTimeline method returns a collection of

375 Chapter 13: An Android Social Media App

twitter4J.Status objects. (Each twitter4J.Status instance contains
one tweet.) So, to honor the contract set by calling the getUserTimeline
method, the code in Listing 13-4 declares statuses to be a collection of
twitter4J.Status objects.

A few lines later in the code, an enhanced for statement steps through the
collection of statuses values and appends each value’s text to a big result
string. The loop adds “\n” (Java’s go-to-the-next-line character) after each
tweet for good measure. In the onPostExecute method, the code displays
the big result string in the screen’s textViewTimeline field.

 In Listing 13-4, in the second doInBackground method, I use the fully quali-
fied name twitter4j.Status. I do this to distinguish the twitter4J.
Status class from Android’s own AsyncTask.Status class (an inner class
of the AsyncTask class).

 For insight into Java’s inner classes, refer to Chapter 11.

Java’s Exceptions
Have I ever had something go wrong during the run of a program? (Hint: The
answer is yes.) Have you ever tried to visit a website and been unable to pull
up the page? (Indubitably, the answer is yes.) Is it possible that Java state-
ments can fail when they try to access the Twitter server? (Absolutely!)

In Java, most of the things that go wrong during the execution of a program
are exceptions. When something goes wrong, your code throws an exception.
If your code provides a way to respond to an exception, your code catches
the exception.

Like everything else in Java, an exception is an object. Every exception
is an instance of Java’s Exception class. When your code tries to divide
by zero (which is always a “no-no”), your code throws an instance of the
ArithmeticException class. When your code can’t read from a stored file,
your code throws an instance of the IOException class. When your code
can’t access a database, your code throws an instance of the SQLException
class. And when your Twitter4J code can’t access the Twitter servers, your
code throws an instance of the TwitterException class.

The classes ArithmeticException, IOException, SQLException,
TwitterException, and many, many others are subclasses of Java’s
Exception class. The classes Exception, ArithmeticException,
IOException, and SQLException are each part the Java’s standard
API library. The class TwitterException is declared separately in the
Twitter4J API.

376 Part IV: Powering Android with Java Code

Java has two kinds of exceptions: unchecked exceptions and checked excep-
tions. The easiest way to tell one kind of exception from the other is to watch
Eclipse’s response when you type and run your code.

 ✓ When you execute a statement that can throw an unchecked excep-
tion, you don’t have to add additional code.

 For example, an ArithmeticException is an unchecked exception.
You can write and run the following (awful) Java program:
package com.allmycode.exceptions;

public class DoNotDoThis {

 public static void main(String[] args) {
 int i = 3 / 0;
 }

}

 When you try to run this code, the program crashes. In Eclipse’s
Console view, you see the message shown in Figure 13-12.

Figure 13-12:
Shame on

you! You
divided by

zero.

 ✓ When you execute a statement that can throw a checked exception,
you must add code.

 A TwitterException is an example of a checked exception, and a call
to getUserTimeline can throw a TwitterException. To find out
what happens when you call getUserTimeline without adding code,
see a portion of Eclipse’s editor in Figure 13-13.

In Figure 13-13, the error message indicates that by calling the getUser
Timeline method, you run the risk of throwing a TwitterException. The
word “Unhandled” means that TwitterException is one of Java’s checked
exceptions, and that you haven’t provided any code to address the possibil-
ity of the exception’s being thrown. That is, if the app can’t communicate
with the Twitter servers, and Java throws a TwitterException, your code
has no “Plan B.”

377 Chapter 13: An Android Social Media App

Figure 13-13:
Java insists

that you
add code

to acknowl-
edge an

exception.

So in Listing 13-4, I add Java’s try / catch statement to my getUserTime-
line call. Here’s the translation of the try / catch statement:

try to execute this statement (or statements): {
 statuses = twitter.getUserTimeline(username[0]);

} If you throw a TwitterException while you’re trying, {
 display a stack trace in Eclipse’s LogCat view.
}

A stack trace is the kind of output (refer to Figure 13-12) that tells you which
sequence of method calls caused the throwing of the exception. A stack trace
can help you diagnose your code’s ills.

Catch clauses
A try / catch statement has only one try clause. But a try / catch state-
ment can have many catch clauses, as shown in this example:

try {
 count = numberOfTweets / averagePerDay;
 statuses = twitter.getUserTimeline(username[0]);
} catch (TwitterException e) {
 System.out.println(“Difficulty with Twitter”);
} catch (ArithmeticException a) {
 a.printStackTrace();
} catch (Exception e) {
 System.out.println(“Something went wrong.”);
}

System.out.println(“No longer contacting Twitter”);

When an exception is thrown inside a try clause, Java examines the accom-
panying list of catch clauses. Every catch clause has a parameter list, and
every parameter list contains a type of exception.

378 Part IV: Powering Android with Java Code

Java starts at whatever catch clause appears immediately after the try
clause and works its way down the program’s text. For each catch clause,
Java asks: Is the exception that was just thrown an instance of the class in
this clause’s parameter list? If it isn’t, Java skips the catch clause and moves
on to the next catch clause in line; if it is, Java executes the catch clause
and then skips past all other catch clauses that come with this try clause.
Java goes on and executes whatever statements come after the whole try /
catch statement.

In the sample code with three catch clauses, if averagePerDay is zero, the
code throws an ArithmeticException. Java skips past the getUserTime-
line statement and looks at the catch clauses, starting with the topmost
catch clause. Here’s what happens.

The topmost catch clause is for TwitterException instances, but dividing
by zero doesn’t throw a TwitterException. So Java marches onward to the
next catch clause.

The next catch clause is for ArithmeticException instances. Yes, divid-
ing by zero threw an ArithmeticException. So Java executes the state-
ment a.printStackTrace() and jumps out of the try / catch statement.

Java executes the statement immediately after the try / catch statement,
displaying the words No longer contacting Twitter. Then Java executes any
other statements after that one.

 In the sample code with three catch clauses, I end the chain of catch clauses
with an Exception e clause. Java’s Exception class is an ancestor of
TwitterException and ArithmeticException and all the other exception
classes. No matter what kind of exception your code throws inside a try clause,
that exception matches the Exception e catch clause. You can always rely on
an Exception e clause as a last resort for handling a problem.

A finally clause
In addition to tacking on catch clauses, you can also tack a finally clause
onto your try / catch statement. Java’s finally keyword says, in effect,
“Execute the finally clause’s statements whether the code threw an excep-
tion or not.” For example, in the following code snippet, Java always assigns
“Finished” to the report variable, whether or not the call to getUser-
Timeline throws an exception:

379 Chapter 13: An Android Social Media App

String report = “”;

try {
 statuses = twitter.getUserTimeline(username[0]);
} catch (TwitterException e) {
 e.printStackTrace();
} finally {
 report = “Finished”;
}

Passing the buck
Here’s a handy response to use whenever something goes wrong: “Don’t
blame me — tell my supervisor to deal with the problem.” (I should have
added the Tip icon to this paragraph!) When dealing with an exception, a
Java method can do the same thing and say, “Don’t expect me to have a try /
catch statement — pass the exception on to the method that called me.”

Listing 10-12, over in Chapter 10 calls the Thread class’s sleep method.
Execution of the sleep method can throw an InterruptedException,
which is one of Java’s checked exceptions. In the listing, I show you how
to surround the call to Thread.sleep with a try / catch statement. In
Listing 13-6, I show you how to insert that try / catch statement inside
another Java program.

Listing 13-6: Nipping an Exception in the Bud
package com.allmycode.naptime;

class GoodNightsSleepA {

 public static void main(String args[]) {
 System.out.println(“Excuse me while I nap.”);
 takeANap();
 System.out.println(“Ah, that was refreshing.”);
 }

 static void takeANap() {
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 System.out.println(“Hey, who woke me up?”);
 }
 }
}

380 Part IV: Powering Android with Java Code

In Listing 13-6, the takeANap method says “Try to sleep for 10,000 millisec-
onds. If your sleep is interrupted, handle it by displaying the question Hey,
who woke me up?” Normally, no other thread interrupts the takeANap
method’s sleep. So, in Figure 13-14, the output of the code doesn’t include
Hey, who woke me up? (In the figure, you don’t see the ten-second pause
between the display of the first and second lines of output. To experience
the full effect, look at the first line in Figure 13-14, pause for ten seconds, and
then look at the second line.)

Figure 13-14:
Running

the code in
Listing 13-6.

You can get rid of the try / catch statement in the takeANap method, as
long as the next method upstream acknowledges the exception’s existence.
To see what I mean, look at Listing 13-7.

Listing 13-7: Make the Calling Method Handle the Exception
package com.allmycode.naptime;

class GoodNightsSleepB {

 public static void main(String args[]) {
 System.out.println(“Excuse me while I nap.”);
 try {
 takeANap();
 } catch (InterruptedException e) {
 System.out.println(“Hey, who woke me up?”);
 }
 System.out.println(“Ah, that was refreshing.”);
 }

 static void takeANap() throws InterruptedException {
 Thread.sleep(10000);
 }
}

In Listing 13-7, the takeANap method’s header contains a throws clause that
passes the buck from the takeANap method to whichever method calls the
takeANap method. Because the main method calls takeANap, Java insists

381 Chapter 13: An Android Social Media App

that the main method contain code to acknowledge the possibility of an
InterruptedException. To fulfill this responsibility, the main method sur-
rounds the takeANap call with a try / catch statement.

Of course, the buck doesn’t have to stop in the main method. You could say,
“Don’t blame me — tell my supervisor to deal with the problem.” And then
your supervisor could say, “Don’t blame me — tell my supervisor to deal
with the problem.” The main method can avoid having a try / catch state-
ment with its own throws clause (see Listing 13-8).

Listing 13-8: Keep Passing the Hot Potato
package com.allmycode.naptime;

class GoodNightsSleepC {

 public static void main(String args[])
 throws InterruptedException {
 System.out.println(“Excuse me while I nap.”);
 takeANap();
 System.out.println(“Hey, who woke me up?”);
 System.out.println(“Ah, that was refreshing.”);
 }

 static void takeANap() throws InterruptedException {
 Thread.sleep(10000);
 }
}

If another thread interrupts this code’s sleep time, the takeANap method
passes the exception to the main method, which in turn passes the exception
to the Java virtual machine. The Java virtual machine deals with the excep-
tion by displaying a stack trace and calling quits on your whole program. It’s
not the smartest way to handle a problem, but it’s a legal alternative in Java.

382 Part IV: Powering Android with Java Code

